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Summary 

Motivation.  

The power of multi-sequence comparison for biological discovery is well established. 

As sequence data from a growing list of organisms is generated and multi-alignment 

software for large sequences are becoming available there is a strong need for 

computational strategies to visually analyze comparison across various species. To be 

efficient these visualization algorithms require the ability to universally handle a wide 

range of evolutionary distances in the framework of their phylogeny relationship. 

 

 

Results. We have developed Phylo-VISTA, an interactive tool for analyzing multiple 

alignments by visualizing the similarity of DNA sequences among multiple species 

while considering their phylogenic relationships.  Features include a broad spectrum of 

resolution parameters for examining the alignment and the ability to easily compare any 

subtree of sequences within a complete alignment dataset.  Phylo-VISTA uses VISTA 

concepts that have been successfully applied previously to a wide range of comparative 

genomics data analysis problems.  
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Availability 

Phylo-VISTA is an interactive java applet available for downloading at 

http://graphics.cs.ucdavis.edu/~nyshah/Phylo-VISTA.  

It is also available on-line at http://www-gsd.lbl.gov/phylovista and is integrated with 

the global alignment program LAGAN at http://lagan.stanford.edu. 

Contact 

phylovista@lbl.gov 
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1. Introduction 

Large-scale genome sequencing efforts have produced an abundance of sequence data 

for a growing list of organisms. Comparative analysis of DNA sequences from multiple 

species is a powerful strategy for identifying functional elements such as genes and 

their regulatory sequences (Loots et al., 2000; Dubchak et al., 2000; Göttgens et al., 

2001; Pennacchio et al., 2001; Frazer et al., 2003). This approach is based on the 

assumption that functionally important elements evolve more slowly than nonfunctional 

genomic regions. For instance, the comparison of relatively distant species, such as 

human and mouse, has revealed conservation among a significant fraction of 

mammalian genes and other functional elements in these organisms (Hardison et al., 

1997; Loots et al., 2000; Batzoglou et al., 2000; Pennacchio et al., 2001, Waterston et 

al., 2002). In addition, "phylogenetic shadowing" (Boffelli et al., 2003) has led to the 

discovery of primate-specific regulatory elements by deep sequence comparisons of 

numerous primate species.  Several efforts are ongoing to sequence and analyze 

targeted genomic regions for conservation across many evolutionarily diverse species 

(for example, for human, mouse, chicken, pufferfish, and zebrafish (Göttgens et al., 

2002) and for human, chimp, baboon, mouse, rat, cow, pig, dog, cat, chicken, pufferfish 

and zebrafish (Brudno et al., 2003)).  

 

Recent developments in local and global alignment methods have allowed scientists to 

perform genomic comparisons between multiple species on a megabase scale. BLASTZ 

(Schwartz et al., 2003) and PatternHunter (Ma el al., 2002) are local alignment 

techniques applied to the comparison of whole vertebrate genome assemblies 

(Waterston et al., 2002). In addition, efficient global alignment programs such as 

Mummer (Delcher et al., 2000, 2002), AVID (Bray et al., 2003), and LAGAN (Brudno 

et al., 2003) provide pair-wise global comparison of very large genomic regions.  AVID 

and LAGAN also produce multiple alignments of megabase-scale sequences 
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(http://baboon.math.berkeley.edu/mavid/; Brudno et al., 2003). Recently developed 

computational schemes use a combined local/global alignment method to quickly 

identify all regions of homology between several entire genomes and provide a detailed 

alignment of these sequences (Couronne et al., 2003).  Still lacking are algorithms for 

visualization and analysis of multiple aligned sequences to support conservation 

analysis across species. Furthermore, the need for algorithms to universally incorporate 

a wide range of evolutionary distances creates a substantial challenge.  

 

Several publicly available visualization tools exist for long pair-wise DNA alignments.  

PIPMaker (Schwartz et al., 2000; Elnitski et al., 2002) generates a highly detailed plot 

of a local alignment as a series of dots and dashes representing the levels of 

conservation between the base and a second orthologous sequence. VISTA (Dubchak et 

al., 2000; Mayor et al., 2000) presents comparative data in the form of a curve to 

display the level of sequence conservation in a predefined window of a global 

alignment.  SynPlot (Göttgens et al., 2001) also utilizes a global alignment and a curve 

plot, but in a different display. All three tools can be used for visualizing pairwise 

alignments as well as multiple pairwise alignments on the same scale (examples are 

provided in Elnitski et al., 2002, Göttgens et al., 2001, Göttgens et al., 2002, Frazer et 

al., 2003).   

 

An important consideration during multiple species sequence alignments is phylogeny. 

Phylogenetic trees have been used extensively in creating alignments. For instance, 

progressive pairwise alignment techniques use a precomputed phylogenetic tree as a 

“guide” to indicate the order in which multiple sequences should be aligned (Thompson 

et al., 1994, Brudno et al., 2003, Edgar and Sjolander, 2003). Phylogenetic trees are also 

useful for calculating proper substitution matrices for an alignment (Henikoff and 

Henikoff, 1992) and in regulatory element identification (Blanchette and Tompa, 2002). 
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While there are tools for visualizing phylogenetic trees and calculating trees based on 

an alignment (see http://evolution.genetics.washington.edu/phylip.html), no tool exists 

for visualizing sequence alignment data while taking phylogenetic trees into account.   

We have developed a tool called “Phylo-VISTA” (short for Phylogenetic VISTA) to 

address this need.  Phylo-VISTA provides visualization of multi-species sequence 

comparison by using phylogenetic trees as a guide to display and analyze the level of 

conservation across tree nodes.  

Phylo-VISTA supports interactive visual analysis of prealigned multi-species sequences 

by performing the following functions: (1) display of a multiple alignment with the 

associated phylogenetic tree; (2) computation of a measure of similarity over a user-

specified window for any node of the tree; (3) visualization of the degree of sequence 

conservation by a line plot; and (4) presentation of comparative data together with 

available annotations.  

 

2. Approach 

We applied the successful VISTA concepts (Dubchak et al., 2000; Mayor et al., 2000) 

to the visualization of multiple alignments considering an associated phylogenetic tree. 

In order to achieve this goal we developed several extensions to VISTA.  For pairwise 

comparison, VISTA requires a user to select one of the sequences as the base sequence. 

A VISTA plot is created by moving a window over an alignment and calculating the 

percent-identity between the base sequence and the aligned sequence, over a window 

surrounding each basepair. The x-axis represents the base sequence, and the y-axis 

represents percent-identity. Annotations for a base sequence are presented in the plots 

as well. VISTA displays the size and location of gaps in the aligned sequence, but for 

the base sequence only their location can be displayed. Thus, using one sequence as a 

base results in loss of information. Therefore, Phylo-VISTA uses the entire multiple 

alignment as a base in the x-axis. Similar realization was used in Synplot for pairwise 
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alignments (Göttgens et al., 2001). As a result, the tool is capable of displaying location 

and length of gaps in all sequences. In addition, to visualize all available data for each 

sequence, Phylo-VISTA can provide annotations beyond a single base sequence. Multi-

species plots allow a user to analyze desirable features in a single visualization (e.g., to 

view and analyze gaps and annotations of all sequences being compared). A sum of 

weighted pairwise similarity measures is used for comparing more than two sequences. 

The modularity of our program allows other, more advanced measures to be added.  

 

3. Description of Phylo-VISTA 

Phylo-VISTA assumes that the given data is a multiple alignment file in multi-fasta 

format. In addition, it takes as input the phylogenetic tree that presumably was applied 

in a progressive alignment phase of a multiple-alignment algorithm (such as in 

LAGAN, Brudno et al., 2003). These trees are used in Phylo-VISTA for generating 

similarity plots and computing the similarity measure. 

The two most widely used methods for scoring multiple alignments are the “sum-of-

pairs” method, where the score at every position is the sum of substitution scores in all 

pairs of sequences, and “consensus scoring”, where a “consensus” letter is chosen at 

every position, and substitutions are penalized relative to the consensus. It is possible to 

combine the two methods. LAGAN, for instance, uses the sum-of-pairs model for 

scoring substitutions, and a consensus model, scaled appropriately, for scoring gaps. 

Several other methods for scoring multiple alignments have been suggested 

(Notredame, et al 2000; Holmes & Bruno, 2001). 

Phylo-VISTA aims to highlight the similarity of genomic sequences over an entire 

phylogeny. Consequently, we have adopted a scoring scheme that takes into account 

similarity across nodes of a given rooted phylogenetic tree. 

Each leaf node in the Phylo-VISTA tree represents a sequence in the alignment. Each 

internal node corresponds to a similarity plot. This plot indicates the average percent 
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identity over a window between pairs of sequences from the left and right subtrees of 

the node. Similarity between sequences from the same subtree is ignored. More 

formally, the similarity value for a node X at position k in the alignment is defined to 

be: 
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 where  
 Sk is the similarity at the kth position in the alignment, 
 n is the number of leaf nodes that are descendents of node X, 
 Bi,j is the Boolean value for sequence pairs i and j, and 
 Di,j is the distance between sequences i and j at the kth position.  
 
The Di,j value is defined as 
 

= D ji,




                                                                                                         otherwise  1,
alignment in thek position  at pair  base same    thehave j and i  sequences if0, . 

 
In this sum, the Boolean values Bi,j are defined as 

= B ji,  




                                                                         otherwise  1,
X  includenot    does that  j   toi  frompath  a is   thereif   0, . 

 

We consider an example involving three species: human, mouse, and chicken. A 

phylogenetic tree is shown in Figure 1.A.  

Position 1 2 3 4 5... 

Human TAA-C… 
Mouse GAAA-… 
Chicken TAT--… 

The similarity measure for the node human-mouse-chicken (the circled node in Figure 

1.A) at position one is 
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chickenmouse,chickenhuman,mousehuman,

chickenmouse,chickenmouse,chickenhuman,chickenhuman,mousehuman,mousehuman,
1

B  B  B
DB  DB  DBS

++
++

= . 

Because human and mouse are on the same subtree there exists a path between them in 

the phylogenetic tree and therefore, Bhuman, mouse is null. As every path from human to 

chicken and mouse to chicken includes the human-mouse-chicken node, Bhuman, chicken 

and Bmouse, chicken are both equal to one. In the example above, for the first position, the 

values of Dhuman, mouse and Dmouse, chicken are zero, and the value of Dhuman, chicken is one. 

Thus, the value of S1 is 0.5. Similarly, S2 has the value one and S3 has the value zero. 

This similarity measure ensures that the not genuine peaks resulting from the strong 

human-mouse similarity are eliminated.  

A user of Phylo-VISTA can navigate through multi alignment data by performing these 

operations: 

1. Selecting nodes in the phylogenetic tree to view the similarity plots for the 

corresponding subtrees. 

2. Selecting a level of resolution of the plot by specifying a certain region from any of 

the sequences for display. Phylo-VISTA allows a user to analyze sequence data at 

multiple levels of detail from the curve of similarity to the actual alignment and the 

identification of conserved short motifs. We support this functionality by allowing a 

user to view the entire alignment and apply a “zoom” operator in a region of interest, 

up to the level of the individual basepairs. 

 

4.  Components 

The Phylo-VISTA layout consists of four main components (Figure 1), which are 

described as follows: 

1. Phylogenetic tree 

Figure 1.A shows a sample phylogenetic tree used for the alignment of five sequences 

(human, mouse, chicken, pufferfish, and zebrafish). Each black node represents a 
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similarity plot for all the sequences that are descendents of that node. The user can 

modify the tree if required. 

 

2. Sequence traversal panel 

This panel contains a collapsible traversal bar for each of the sequences, and an 

additional global bar for the alignment (Figure 2). The red rectangle indicates the 

currently selected region of each of the sequences.  The user can move and resize the 

rectangle on the bar of the sequence of interest, and choose the size of the region for 

generating plots. When selecting a region in one sequence, the corresponding aligned 

regions in the other sequences are selected automatically (Figure 2). Each bar displays 

user-supplied annotations. Below the bar of each sequence, a narrow strip shows how 

the sequence is distributed across the alignment. 

 

3. Similarity plots 

A similarity plot is defined for each selected node in the tree (Figure 3). The x-axis 

represents the alignment projected to the subtree rooted at the selected node, and the y-

axis represents percent-similarity. Similar to VISTA, the plot is produced by sliding a 

window of user-specified length over the alignment and calculating the similarity score 

at each basepair in that window. Below each plot are shown user-supplied annotations 

for all the sequences along with the gaps. Gaps are shown as gray rectangles. When 

gaps exist in all the sequences for a given plot the entire plot area is shaded in gray. 

Because the x-axis represents the alignment, and not any of the actual sequences, the 

basepair number is shown for all sequences on the left-hand side of the plot. The plots 

can be viewed at varying resolution allowing a user to visualize sequences of arbitrary 

lengths (Figure 4).  
 

4. Text window 
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In the text window sequences can be viewed in text format (Figure 5). The text is color-

coded such that conserved DNA sequence motifs are highlighted. Black represents 

complete identity, while other colors are used to indicate identical bases between a 

subset of species. 

To support interactive visualization, Phylo-VISTA is required to be computationally 

efficient. The time-critical step involves the computation of sequence similarity. The 

algorithm for calculating similarity requires O(N2L) time, where N is the number of 

sequences and L is the length of the alignment. Phylo-VISTA has O(N2L) time 

complexity and O(NL) memory complexity. The Phylo-VISTA Java applet, being a thin 

client, does not require a user to have access to a high-end computer. 

 

Example: analysis of a multiple alignment of the stem cell leukemia region  

To demonstrate the use of Phylo-VISTA for multi-species DNA sequence alignments, 

we have examined the stem cell leukemia (SCL) gene interval (Begley and Green 1999; 

Orkin et al. 1999).  The SCL gene encodes a transcription factor that plays a crucial role 

in the formation and development of blood cells in bone marrow (hematopoiesis) and in 

embryonic formation and differentiation of the vascular system (vasculogenesis) 

(Porcher et al. 1996; Robb et al. 1996). The expression pattern of this gene is highly 

conserved throughout vertebrates from mammals to teleost fish (Green et al. 1992; 

Kallianpur et al. 1994; Gering et al. 1998; Liao et al. 1998; Mead et al. 1998; Sinclair et 

al. 1999; Drake and Fleming 2000). Previous comparative analysis of five vertebrate 

SCL loci (considering human, mouse, chicken, pufferfish, and zebrafish) has revealed 

five DNA sequence motifs in the SCL promoter/enhancer that are conserved in all five 

species. These five conserved motifs are known to be essential for the appropriate 

expression pattern of SCL (Göttgens et al. 2002).  

We have applied Phylo-VISTA on a LAGAN multiple alignment of the SCL region, 

consisting of about 100 kb human, 65 kb mouse, 22 kb chicken, 8 kb pufferfish, and 67 



 11

kb zebrafish sequence data within the SCL region.  After aligning all five species the 

length of the resulting multiple alignment equaled approximately 150 kb.  Figure 4.A 

shows the similarity plot of the entire alignment for the node human-mouse-chicken-

pufferfish-zebrafish in the phylogenetic tree shown in Figure 1.A. The annotations for 

all the sequences are shown below the plot. Blue rectangles indicate exons, and gray 

rectangles indicate gaps. Figure 4.B shows the Phylo-VISTA result obtained when 

zooming in the region with peaks (highlighted by an oval in Figure 4.A).  A peak 

(shown by an oval in Figure 4.B) is visible in front of exon 1. By repeatedly applying 

the zoom operator, the plot shown in Figure 4.C is obtained. Reducing the sliding 

window width yields the similarity plot shown in Figure 4.D. The sequence traversal 

panel for this stage is shown in Figure 2. It can be seen that the promoter/enhancer 

region of SCL is selected for all sequences. The size of the selected region consists of 

only 39 basepairs, and sequence motifs in the text window can be examined.  

Figure 5 shows a part of the conserved promoter/enhancer region of all sequences in 

text format. The basepairs that are conserved in all sequences are highlighted in black. 

The highlighted motif AATGAATCATTT is a known SKN-1 cis-regulatory site 

(Lecointe et al. 1994; Bockamp et al. 1995, 1997, 1998; Sinclair et al. 1999). The other 

two motifs “GCCAAAT” (CS1, Cleavage signal-1 protein) and “ATAATGG” (CS2, 

Calsyntenin-2) were identified in earlier comparative analysis efforts (Göttgens et al. 

2002). All three motifs are known to be binding sites for transcription factors 

responsible for regulating the expression of SCL (Göttgens et al. 2002). 

 

4. Conclusions and Future Work 

Phylo-VISTA is a new interactive visualization and analysis tool for aligned sequences 

of multiple species. Its current functionality includes: 

1. Visualization of multiple alignments at various levels of resolution 
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2. Visualization of alignments of any branch of a given phylogenetic tree connecting 

the aligned sequences 

3. Adjustment of sliding window width and percent-similarity cutoffs for the 

representation of conserved regions (an important feature when dealing with distant 

versus close species) 

4. Visualization of gaps and gene annotations for all species 

5. Ability to view the alignment at the text level, assisting with the identification of 

sequence motifs  

Phylo-VISTA is a modular program and can support, in principle, different similarity 

measures. For example, the Boolean values in the current measure can be substituted by 

weights based on evolutionary distance between species. We plan to integrate Phylo-

VISTA with a search engine for transcription factor binding sites.  

 

4. Availability 

Phylo-VISTA is implemented as a Java applet. It is available online at  

http://www-gsd.lbl.gov/phylovista. It can be downloaded together with a help manual 

from http://graphics.cs.ucdavis.edu/~nyshah/Phylo-VISTA. The required input is an 

alignment file in multi-fasta format, a phylogenetic tree, and optional annotation files 

for all sequences in GFF format.  Phylo-VISTA is also integrated with the multiple 

alignment program LAGAN at http://lagan.stanford.edu.  
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Captions: 

 

Figure 1. Phylo-VISTA output 

Figure 2. Sequence traversal panel 

Figure 3. Similarity plots 

Figure  4. Visualization of a multiple alignment dataset, consisting of human, mouse, chicken, 

pufferfish, and zebrafish data - stem cell leukemia (SCL) regions being analyzed 

Figure 5. Text window 
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Figure 1. Phylo-VISTA output. 

Visualization of the alignment of about 100,000 basepairs of human stem cell leukemia (SCL) region, 

considering mouse, chicken, pufferfish, and zebrafish sequences.  

A. Phylogenetic tree. In this pairwise phylogenetic tree, all sequences in the alignment are 

represented by red leaf nodes. Each black node represents a similarity plot for all the 

descendent leaf nodes. The selected node is circled, representing a similarity plot for human, 

mouse, and chicken. 

B. Similarity plots (details shown in Figure 3) for the selected nodes of the phylogenetic tree in 

part B. The sequence traversal panel (details shown in Figure 2) shows the bars for the human, 

mouse, and chicken sequences. The bars for pufferfish and zebrafish are not shown, as they 

were not selected in the tree. 

C. Part of the alignment in color-coded text (details shown in Figure 4). 
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Figure 2. Sequence traversal panel. 

A sequence traversal panel for the alignment of stem cell leukemia (SCL) regions in human, mouse, 

chicken, pufferfish, and zebrafish sequences. A bar is shown for each sequence. A red rectangle shows 

the selected region in each sequence. A black arrow on the top of each bar indicates a gene. The blue 

rectangles are exons, and yellow rectangles show conserved features supplied by a user. These 

annotations show that the selected region is upstream of the SCL gene in all the sequences. The 

numbers below each bar denote the starting position and the size of the selected region in the 

corresponding sequence. For example, the starting position in the human sequence is 17694, and the 

size of the selected region is 39 basepairs. A narrow strip below each bar shows the distribution of the 

sequence on the alignment scale. The initial part of the zebrafish sequence does not align with any 

other sequence, leading to the gaps in all the other sequences in the initial part of the alignment.
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Figure 3. Similarity plots. 

Similarity plots corresponding to the black nodes of the phylogenetic tree shown in Figure 1.A. The 

height in the line plot corresponds to percent-similarity. Minimum conservation is set to 25%. Below 

the line plots the annotations for each sequence are given. Gray rectangles indicate gaps, blue 

rectangles represent exons, and yellow rectangles show user-supplied conserved features. The text on 

the left side of the annotations shows the name of the sequence, its selected start and end positions, and 

the current cursor position. The peak visible in all plots indicates a region conserved in all sequences.  
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Figure 4. Visualization of a multiple-alignment data set consisting of human, mouse, chicken, 

pufferfish, and zebrafish SCL regions. 

 

A. Bird’s eye view of the alignment consisting of about 150000 basepairs. Peaks indicate 

conservation. The region selected for applying the zoom operator is shown by an oval. 

B. A peak (oval) exists upstream of exon 1 of SCL. The zoom operator is applied to the peak. 

C. Region without gaps selected for zooming. 

D. Conserved region seen at high resolution, using a window width of one. This plot documents that 

motifs are conserved at a level of 100%. The sequence traversal panel is shown in Figure 2. The 

corresponding text is shown in Figure 2. 
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Figure 5. Text window. 

The text window shows the selected part of the sequences in text format. Each basepair is shown in a 

different color. The window shows the starting position of the selected region in a sequence. Basepairs 

conserved in all sequences are highlighted in black. This figure shows the promoter/enhancer of the 

SCL gene. Three conserved motifs (CS1, SKN-1 and CS2) are highlighted. These three motifs are 

binding sites for transcription factors that are known to be essential for the appropriate expression 

pattern of SCL. The SKN-1 motif is a known binding site. The CS1 and CS2 motifs were discovered 

by using multiple alignment. 


